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Abstract

We study three-dimensional Yang–Mills–Higgs theories with and without a
Chern–Simons interaction. We find that these theories admit a rich spectrum of
vortex solitons carrying both a topological charge and a global flavour charge.
We further derive a low-energy description of the vortex dynamics from a
gauged linear sigma model on the vortex worldline.

PACS numbers: 11.27.+d, 11.10.Kk

1. Introduction

Chern–Simons interactions have played an important role in d = 2 + 1 dimensional field
theories ever since they were introduced [1]. The discovery of vortices in these theories
carrying both electric charge and magnetic flux has been of particular interest [2–4]1. These
objects have applications in planar condensed matter physics, especially the fractional quantum
Hall effect [7–9]. Further condensed matter applications of Chern–Simons interactions are
considered in [10, 11]; the topic is reviewed in [12, 13].

Chern–Simons vortices in non-Abelian gauge theories have also been studied in several
contexts: the nonrelativistic U(1) model of [14] was extended to SU(N) theories in [15];
vortices in a relativistic theory with a Chern–Simons term but no Yang–Mills term were
considered in [16]; and the vortices of relativistic Yang–Mills–Chern–Simons (YMCS)
theories were considered in [17–19].

Recently, a different type of vortex in U(N) gauge theories has been considered [20, 21].
In contrast to ZN vortices in SU(N) theories [22, 23], bound states of these vortices are stable
against decay. Moreover, these vortices have been shown to carry genuine non-Abelian flux,
which appears as non-Abelian orientational zero modes. These objects have been studied
mainly in d = 3 + 1 dimensions, where they have been useful in understanding the quantum
dynamics of gauge theories.

1 Note that it is also possible to give electric charge to non-Chern–Simons vortices by coupling them to fermions [5];
this method has recently been used in studies of graphene [6].
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In this paper, we extend the study of non-Abelian vortex dynamics in d = 2+1 dimensions
by considering theories with a Chern–Simons interaction which include massive matter in the
fundamental representation. We find that such theories admit a rich spectrum of vortices.
As well as carrying a topological (magnetic) charge and an electric charge like other Chern–
Simons vortices, the vortices in our model carry a Noether charge associated with a global
flavour symmetry. Unlike the electric charge, this last charge can be nonzero even if the
Chern–Simons coefficient is switched off. The possibility of such dyonic vortices in non-
Chern–Simons theories has previously been established in [24], but here we go further by
considering the effect of the Chern–Simons interaction and studying the low-energy dynamics.
We will find that the dyonic vortices in our model can follow an intricate variety of trajectories
on moduli space, even when only one vortex is present.

There is a further motivation for our investigation. Besides giving us a fuller understanding
of solitons in classical YMCS theory, our results on dyonic vortices help to lay the groundwork
for a semiclassical quantization of the theory and an understanding of the quantum spectrum.
This is interesting in light of recent research that shows that vortices in d = 3 + 1 capture
much of the quantum information of the bulk theory they live in [25, 26]. The question of
whether analogous information can be extracted from vortices in d = 2 + 1 remains open, but
the work presented here is a necessary first step.

The plan of this paper is as follows. In section 2 we introduce the model of interest,
then find the Bogomolnyi bound on the energy of vortex configurations and show for the first
time that the dyonic vortex mass is different in the cases with and without a Chern–Simons
interaction. In section 3, we review how motion on the vortex moduli space is affected by
massive matter and Chern–Simons interactions, and we rederive our vortex mass results from
the perspective of a d = 0 + 1 gauged linear sigma model. Finally, in section 4, we look at
the implications of our results in the case of a single vortex in a U(2) gauge theory. We find
that there is a variety of possible BPS and non-BPS solutions for the moduli space motion,
including circular orbits and more exotic looping trajectories.

2. Dyonic vortices in d = 2 + 1

We will begin by introducing the theory we are interested in, and highlighting some related
models. Then we will write down the energy functional for our theory and show that it is
subject to a Bogomolnyi bound. This bound gives the mass of a vortex. We will see that
the mass depends both on the topological charge and on a Noether charge associated with the
global flavour symmetry of the theory. The form of this dependence is different in the cases
with and without a Chern–Simons interaction.

We will work with a Yang–Mills theory in d = 2 + 1 dimensions, with N = 2
supersymmetry (i.e. four supercharges), a U(N) gauge multiplet and Nf fundamental chiral
multiplets. Our theory is thus related to the dimensional reduction of the d = 3 + 1, N = 1
theory in chapter 3 of [27]. However, our Lagrangian also includes two extra deformations
which are allowed in d = 2 + 1, N = 2 theories. The first is a Chern–Simons term, the
N = 2 version of which is exhibited in [28]. The second is a set of real masses mi (with
i = 1, . . . , Nf ) for the chiral multiplets, as discussed in [29]. The bosonic part of the
Lagrangian is then determined by supersymmetry:

L = − 1

2e2
Tr FμνF

μν − κ

4π
Tr εμνρ

(
Aμ∂νAρ − 2i

3
AμAνAρ

)
+

1

e2
Tr(Dμφ)2

+ |Dμqi |2 −
∑

i

q
†
i (φ − mi)

2qi − e2

4
Tr

(
qiq

†
i − κφ

2π
− v2

)2

. (2.1)
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Here, the adjoint scalar φ is part of the gauge multiplet. The fundamental scalars qi belong
to the chiral multiplets; the shape of the potential for these scalars is crucial in allowing the
existence of vortices. For N � 2, the Chern–Simons coefficient κ must be an integer so that
the partition function is invariant under large gauge transformations. For the Abelian N = 1
theory, there is no such constraint. Generically, the masses mi break the flavour symmetry of
the model from SU(Nf ) to U(1)Nf −1.

This model is part of a large family of theories admitting vortex solutions. We can obtain
various related theories by taking limits of the above Lagrangian.

• When κ = 0 and mi = 0, we have a Yang–Mills theory with massless fundamental scalar
fields. This theory admits non-Abelian vortices. These were originally introduced in
[20, 21] and have since been studied in some detail (for reviews, see [27, 30, 31]).

• When κ = 0 but mi �= 0, we have a Yang–Mills theory with massive fundamental scalar
fields. The vortices of the d = 3 + 1 version of this theory were discussed in [25, 32].

• When κ �= 0 but mi = 0, we have a Yang–Mills–Chern–Simons–Higgs theory like
those studied in [33, 34]. This reduces to the Maxwell–Chern–Simons–Higgs theory of
[35, 36] in the N = 1 case.

• When κ �= 0,mi = 0 and e2 → ∞, the Yang–Mills term vanishes, and we can integrate
out φ to get the Chern–Simons–Higgs theory with sixth-order potential. The Abelian
version of this theory was first introduced in [3, 4, 37] and its non-Abelian generalization
has been studied more recently in [16, 38].

The review [13] covers many of the Chern–Simons models mentioned above. Vortices in
Yang–Mills–Chern–Simons theories with several Higgs fields and no fundamental matter
fields have been previously studied in [17, 18, 39].

Our theory has vacua featuring different amounts of symmetry breaking. Two of the most
important are the unbroken phase and the Higgs phase. In the unbroken phase, the vacuum
expectation values of the fields leave the U(N) gauge symmetry intact:

Unbroken phase:
〈
φa

b

〉 = −2πv2

κ
δa
b , 〈qi〉 = 0. (2.2)

Here a, b = 1, . . . , N is the colour index. The unbroken phase exists irrespective of the
number of flavours Nf . The Higgs phase, on the other hand, exists only when Nf � N , a
condition that is needed for a cancellation in the potential between the rank Nf term qiq

†
i and

the rank N term v2 (which implicitly includes an N × N identity matrix). For simplicity, we
set Nf = N from here on. In the Higgs phase, the vacuum expectation values of the fields are

Higgs phase: 〈φ〉 = diag(m1, . . . , mN),
〈
qa

i

〉 = δa
i

√
v2 +

κ

2π
mi. (2.3)

The flavour and gauge symmetries of the theory are each fully broken in this vacuum, but a
subgroup of their product survives: U(N)gauge × U(1)N−1

flavour → U(1)N−1
diag . We note that the

theory also has several ground states with partly broken gauge symmetry. For each such state,
the vacuum expectation values of the fields have some diagonal entries equal to those in (2.2)
and the rest equal to those in (2.3).

The Higgs phase admits topologically stable vortices, and it is this ground state that we
will work with for the rest of this paper. Note that if

∑
i mi = M �= 0, then we may define

v′2 = v2 +
κM

2πN
, φ′ = φ − M

N
, m′

i = mi − M

N
,

so that
∑

i m
′
i = 0. Substituting these rescalings into (2.1) and (2.3), we find that the

Lagrangian and the vacuum expectation values have exactly the same form as before, only

3
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with v2, φ and mi replaced by v′2, φ′ and m′
i . Hence we may assume without loss of generality

that
∑

i mi = 0.
By a novel application of the Bogomolnyi procedure [35, 40, 41], we will now find a

lower bound on the energy of the field configurations of the theory. Requiring that this bound
should be saturated will give us a set of first-order differential equations whose solutions are
vortices.

We first write down the energy functional H of the theory. This is the Noether charge
associated with a combination of a time translation and a gauge transformation. The gauge
transformation is chosen so that the infinitesimal variation of any field under the combination
is proportional to that field’s covariant time derivative:

H =
∫

d2x

[
1

e2
Tr

(
E2

α + B2) +
1

e2
Tr((D0φ)2 + (Dαφ)2) + |D0qi |2 + |Dαqi |2

+
∑

i

q
†
i (φ − mi)

2qi +
e2

4
Tr

(
qiq

†
i − κφ

2π
− v2

)2
]

. (2.4)

Note that we define Eα = F0α and B = F12. We now follow the usual Bogomolnyi procedure,
and complete the square:

H =
∫

d2x

[
|D±qi |2 + Tr

(
1

e
B ± 1

2
e

(
qiq

†
i − 1

2π
κφ − v2

))2

+
1

e2
Tr(D0φ)2 +

1

e2
Tr(Eα ∓ Dαφ)2 +

∑
i

|D0qi ∓ i(φ − mi)qi |2

∓ Tr

[
2φ

(
− 1

4π
κB +

i

2

[
(D0qi)q

†
i − qi(D0qi)

†] +
1

e2
DαEα +

i

e2
[D0φ, φ]

)]

± (Tr B)v2 ± i
∑

i

[(
q
†
i (D0qi) − (D0qi)

†qi

)
mi

]]
. (2.5)

In this expression we have used the notation D± = D1 ± iD2.
If κ and mi are chosen to be zero then we may set φ ≡ 0, so the third line in (2.5)

disappears. However, if either κ or mi is nonzero and we have nontrivial fields qi, Aα , then
the equation of motion for φ includes source terms, so we cannot set φ ≡ 0. Thus for the third
line in (2.5) to disappear, we must invoke Gauss’ law:

−κB

4π
+

i

2

[
(D0qi)q

†
i − qi(D0qi)

†] +
1

e2
DαEα +

i

e2
[D0φ, φ] = 0. (2.6)

Of the two terms in the last line of (2.5), the first integrates to ±2πkv2, where k is the
topological charge. The integral of the second term can be written as ±∑

iQimi , where we
define

Qi ≡ i
∫

d2x
(
q
†
i (D0qi) − (D0qi)

†qi

)
. (2.7)

The Qi are conserved Noether charges associated with the U(1)N−1 flavour symmetry of the
theory. If we take the trace of Gauss’ law (2.6) and then integrate over space, we find that∑

iQi = κk. This is the realization in our model of the usual relationship between ‘electric’
charge and magnetic flux for Chern–Simons vortices. In the e2 → ∞ limit where the Yang–
Mills term decouples, the local version of the relationship is given by 2π

∑
i ρi = κ Tr B,

where ρi is the integrand in (2.7).
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All of the terms in the first two lines of (2.5) are non-negative squares, so we see that the
energy H of our configuration is subject to a Bogomolnyi bound, which we interpret as the
vortex mass:

H �
∣∣∣∣∣2πkv2 +

∑
i

Qimi

∣∣∣∣∣ ≡ Mvortex. (2.8)

This new result is remarkable because it means that sometimes increasing the value of∣∣∑
iQimi

∣∣ may decrease the vortex mass. This is an unusual property; typically, increasing
the size of a charge on a soliton will increase the soliton’s mass.

To saturate the bound (2.8), a configuration must obey Gauss’ law (2.6) and solve the
first-order Bogomolnyi equations that arise from setting the squared terms to zero in (2.5).
Given a configuration that satisfies these constraints, it is straightforward to show that the
quantity 2πkv2 +

∑
iQimi is strictly positive if k > 0 and strictly negative if k < 0. For the

case k = 1, we will show in the next section that the minimum possible value of Mvortex for
given mi is 2πv2 + mpκ , where mp is the most negative of the mi values if κ > 0 or the most
positive of the mi values if κ < 0.

In the special case κ = 0, the Bogomolnyi process works slightly differently. The absence
of the κB term in Gauss’ law means that in (2.5) we can make one sign choice for the first
line and the topological charge term, and a separate choice for the second and third lines and
the flavour charge term. As a result, we have a stricter Bogomolnyi bound:

H � |2πkv2| +

∣∣∣∣∣
∑

i

Qimi

∣∣∣∣∣ ≡ Mvortex. (2.9)

Once again, the bound is saturated if and only if Gauss’ law and the Bogomolnyi equations
hold.

We call the vortices in this theory dyonic because Mvortex has contributions from two types
of charge: the topological charge k and the Noether charge

∑
iQimi . The significance of the

difference between the bounds (2.8) and (2.9) is that increasing
∣∣∑

iQimi

∣∣ always increases
the vortex mass in the κ = 0 case, but may either increase or decrease the vortex mass in the
κ �= 0 case.

The dyonic vortices we have considered in d = 2 + 1 dimensions are related to several
other kinds of dyonic solitons in different numbers of dimensions. These include dyonic
instantons in d = 4 + 1 [42], the original dyonic monopoles in d = 3 + 1 [43–45], semilocal
vortices in d = 2+1 [46]2 and the dyonic domain walls known as Q-kinks in d = 1+1 [49]. A
wide variety of soliton states, including vortices and their dyonic extensions, were considered
in [24, 50–52].

It is interesting to compare the dyonic vortex masses we have calculated with the masses
of other types of dyons. For dyonic monopoles and Q-kinks, the mass can be written
schematically as M = (

Q2
a + Q2

b

)1/2
, where Qa and Qb are the two types of charge that

make these solitons dyonic [49, 53]. We can therefore regard dyonic monopoles and Q-kinks
as bound states, each containing two distinct objects with masses Qa and Qb. For dyonic
instantons and semilocal vortices, the mass is schematically closer to M = Qa + Qb [42, 46],
so it seems these objects are only threshold bound states.

2 Semilocal vortices can arise in Abelian gauge theories with multiple flavours of matter and are related to sigma
model Q-lumps. The moduli space of semilocal vortices suffers from non-normalizable zero modes corresponding
to the scale parameters of the vortices [47, 48]. Our non-Abelian model avoids this problem because it contains
equal numbers of colours and flavours: it hence has no vortex scale parameters, so the vortex moduli space is free of
non-normalizable zero modes.

5
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The dyonic vortices in our study, meanwhile, can be regarded as true bound states of two
different types of object. The first object is a vortex with a topological charge but no flavour
charges; this has mass 2π |k|v2. The second object has flavour charges but no topological
charge, so it is made up of excitations of the squark fields qa

i . Excitations of the qa
i about the

vacuum have masses
[
e2

〈
qa

i

〉2/
2 + (ma − mi)

2
]1/2

. The dyonic vortex mass Mvortex is smaller
than the sum of the masses of the constituent objects, since the

〈
qa

i

〉
part of the squark excitation

masses does not contribute to Mvortex. Hence the dyonic vortex is a classically stable bound
state.

3. The dyonic vortex worldline theory

The moduli space approximation is a useful tool for understanding the low-energy dynamics of
vortices [54]. For the theory given by (2.1), with κ and mi set to zero, slow motion on the vortex
moduli space is described by a nonlinear sigma model. In this section, we will review how
this motion is modified when we reintroduce nonzero mi and κ . We will then reformulate our
description of the motion as a gauged linear sigma model, and see how from this perspective
we can rederive the results of the preceding section by applying the Bogomolnyi procedure to
the d = 0 + 1 energy functional.

In the theory (2.1) with mi = 0 and κ = 0, the set of static physical solutions of the
Bogomolnyi equations with topological charge k forms a moduli space M. This has collective
coordinates Xp and Kähler metric gpq , where p, q = 1, . . . , 2N |k|. Low-energy vortex
dynamics is described by geodesic motion on M:

L = 1
2gpq(X)ẊpẊq . (3.1)

The metric has an SU(N) isometry arising from the unbroken SU(N)diag remnant of the gauge
and flavour symmetries of the theory. We can find a set of N Killing vectors Ki associated
with the isometry such that

∑
i Ki = 0.

If we allow mi �= 0 but keep κ = 0, then a potential is induced on the moduli space. This
potential can be written in terms of the Killing vectors Ki [25, 32, 55]:

Vm =
N∑

i,j=1

(
miKp

i

)(
mjKq

j

)†
gpq. (3.2)

If we instead allow κ �= 0 but keep mi = 0, then a magnetic field F ∈ �2(M) is induced on
the moduli space. Writing this locally as F = dA and working to leading order in κe/v, we
find the dynamics on M is modified by an extra term in the Lagrangian [33, 36]:

Lκ = −κAp(X)Ẋp. (3.3)

If we allow both mi �= 0 and κ �= 0, then the Lagrangian for motion on M includes both the
Chern–Simons term (3.3) and a potential similar to (3.2). We might expect that the potential
(3.2) is modified by terms of order miκ; we have not calculated this from the nonlinear sigma
model, but in the next subsection we will check that it is true, at least for k = 1, by using a
gauged linear sigma model.

3.1. The gauged linear sigma model for one vortex

For an alternative description of motion on the one-vortex moduli space, and to clarify what
happens when κ and mi are both nonzero, we now assemble a standard d = 0 + 1 gauged
linear sigma model, with a U(1) gauge field and N = (0, 2) supersymmetry. This ‘worldline
theory’ for a non-Abelian vortex is straightforward to solve, but it is more interesting than

6
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the corresponding theory for an Abelian vortex because non-Abelian vortices have an internal
orientation as well as a spatial position. If we ignore the spatial position of our non-Abelian
vortex and set mi = 0, then the moduli space of vortex configurations is M = CP

N−1, with
homogeneous coordinates ϕi ∈ C, i = 1, . . . , N . These coordinates give N fundamental
scalar fields in the worldline theory, and roughly speaking they correspond to the orientation
of the vortex in the U(N) gauge group of the parent theory. The fields ϕi are subject to the
D-term constraint

D ≡
N∑

i=1

ϕiϕ
†
i − r = 0, (3.4)

where r is a constant which is determined to be 2π/e2 [20, 21, 56]. In the case mi = 0, κ = 0,
the Lagrangian (3.1) is L = |Dtϕi |2, where Dtϕi = ∂tϕi − iAϕi and A is the gauge field
for the U(1) worldline gauge symmetry. The scalars ϕi enjoy an SU(N) flavour symmetry
corresponding to the SU(N) isometry of the metric on M.

If we introduce nonzero masses mi for the qi of the parent theory, then the gauged linear
sigma model is deformed by the introduction of masses mi for the ϕi [25]:

L = |Dtϕi |2 −
∑

i

ϕ
†
i (σ − mi)

2ϕi. (3.5)

Here, σ is an adjoint scalar field in the N = (0, 2) gauge multiplet. The deformation (3.5)
is consistent with the N = (0, 2) supersymmetry of the theory, but for generic mi it breaks
the flavour symmetry from SU(N) to U(1)N−1. When we integrate out σ and A in (3.5), we
recover the moduli space potential (3.2).

If we now introduce a Chern–Simons interaction into the parent theory, then a
corresponding term is induced in the gauged linear sigma model [33]:

L = |Dtϕi |2 −
∑

i

ϕ
†
i (σ − mi)

2ϕi − κ(A + σ). (3.6)

Although each of the terms here has been studied before, we believe this is the first time
the Lagrangian including both the masses mi and the Chern–Simons coefficient κ has been
analysed. Note that we can again integrate out σ and A to find the potential on M:

V = 1

r

∑
i<j

(mi − mj)
2|ϕi |2|ϕj |2 +

κ

r

∑
i

mi |ϕi |2. (3.7)

The first term is independent of κ and matches the potential in [25]. The second term is
the promised order miκ modification. Note that the first term is non-negative, so V can be
minimized (subject to the constraint (3.4)) by choosing p ∈ 1, . . . , N such that mpκ � miκ ∀i,
then setting

|ϕi | =
{
r if i = p

0 otherwise.
(3.8)

From the Lagrangian (3.6), we can compute Gauss’ law,

i
N∑

i=1

(
(Dtϕi)ϕ

†
i − ϕi(Dtϕi)

†) = κ (3.9)

⇒
∑

i

Qi = κ, where Qi ≡ i
(
(Dtϕi)ϕ

†
i − ϕi(Dtϕi)

†). (3.10)

The Qi are conserved Noether charges corresponding to the U(1)N−1 flavour symmetry of the
worldline theory. As we will see soon, they are related to the Noether charges Qi (2.7) of the
parent theory.

7
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3.2. The dyonic vortex mass

We are now ready to apply the Bogomolnyi procedure to rederive the new results of
section 2. As in the d = 2 + 1 case, we can find the energy functional for the theory as
the Noether charge associated with a combined time translation and gauge transformation:

H1d = |Dtϕi |2 +
∑

i

ϕ
†
i (σ − mi)

2ϕi + κσ. (3.11)

When we complete the square, we get

H1d = |Dtϕi − i(σ − mi)ϕi |2 + Tr

[
σ

(
κ − i

∑
i

(
(Dtϕi)ϕ

†
i − ϕi(Dtϕi)

†))]
+

∑
i

Qimi.

(3.12)

Imposing Gauss’ law (3.9) gives the lower bound H1d �
∑

i Qimi . Note that if mi = 0, then
the vortex has mass 2πv2. The energy H1d gives corrections to this mass which arise from the
fields on the worldline, so we can write

Mvortex = 2πv2 +
∑

i

Qimi. (3.13)

This formula is remarkable because it shows from the worldline perspective that appropriately
chosen values for the charges Qi can give a negative contribution to the mass of the vortex.
This is an unusual property for a soliton, but it matches what we found in the parent theory in
section 2.

By eliminating the auxiliary fields σ and A from (3.11), we can see that the minimal
possible value of Mvortex for given mi is achieved by setting ϕ̇i = 0 and then choosing ϕi

to satisfy (3.8), so that V is minimized. We then have Mvortex = 2πv2 + mpκ , where mp is
the most negative of the mi values if κ > 0 or the most positive of the mi values if κ < 0.
This minimal value of Mvortex is guaranteed to be strictly positive by the fact that the vacuum
expectation value

〈
q

p
p

〉
given in (2.3) must be strictly positive to permit the winding of the

vortex to lie in the pth flavour, as demanded by (3.8).
In the special case κ = 0, the Bogomolnyi process works slightly differently, just as in

three dimensions. In particular, we have a choice of signs when we complete the square:

H1d = |Dtϕi ± i(σ − mi)ϕi |2 ± Tr

[
σ

(
i
∑

i

(
(Dtϕi)ϕ

†
i − ϕi(Dtϕi)

†))]
∓

∑
i

Qimi.

(3.14)

This gives us a stricter bound on the energy once we apply Gauss’ law:

H1d �
∣∣∣∣∣
∑

i

Qimi

∣∣∣∣∣ ⇒ Mvortex = 2πv2 +

∣∣∣∣∣
∑

i

Qimi

∣∣∣∣∣ . (3.15)

Our results (3.13), (3.15) match the k = 1 versions of the corresponding results (2.8),
(2.9) from the parent theory if we make the identification Qi = Qi . Note that under this
identification, there is agreement between the constraints

∑
iQi = κk and

∑
i Qi = κ , and

the right-hand side of (3.13) is necessarily positive. Just as we saw in section 2, increasing∣∣∑
i Qimi

∣∣ always increases the vortex mass in the κ = 0 case, but may either increase or
decrease the vortex mass in the κ �= 0 case.

If we are interested in a multi-vortex system, it is again possible to provide a gauged
linear sigma model for the dynamics, this time by using a brane construction [20]. However,
the metric induced on the moduli space when we quotient the gauged linear sigma model

8
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by the action of the gauge group no longer matches the metric gpq of the nonlinear sigma
model. Consequently, the k-vortex gauged linear sigma model does not give a strictly accurate
description of k-vortex moduli space dynamics, although it may still be useful for finding
qualitative properties of the motion.

4. Example: a single U (2) vortex

In this section, which contains original material, we will apply our results to the case of a
single vortex in a U(2) Yang–Mills–Chern–Simons theory including two flavours of matter
with masses m and −m. We will obtain the effective potential on the moduli space of vortices,
and use it to study some features of the dynamics. In particular, we will find that the gauged
linear sigma model perspective makes it straightforward to find BPS and non-BPS solutions
corresponding to several different types of moduli space motion.

If m = 0, the moduli space M is S2 ∼= CP1. When we switch on the mass m, a potential
given by (3.7) is induced on M. Using coordinates θ ∈ [0, π ] and φ ∈ [0, 2π) on S2, we have

L = r

4
[θ̇2 + sin2 θφ̇2] +

κ

2
(cos θ − 1)φ̇ − rm2 sin2 θ − κm cos θ. (4.1)

The first term describes a standard sigma model on S2. The second term is the Dirac monopole
connection, as was explained in [33], and the final two terms give the potential induced by m.
Changing the sign of m corresponds to changing which pole we identify as north. Changing
the sign of κ corresponds to performing a parity transformation θ → π − θ . In what follows,
we choose both m and κ to be non-negative without loss of generality.

The theory described by (4.1) has a conserved angular momentum:

J = rφ̇ sin2 θ + κ cos θ = Q1 − Q2. (4.2)

There is also a conserved Hamiltonian which we can write as

H = r

4
θ̇2 + Veff(θ), where Veff(θ) = (J − κ cos θ)2

4r sin2 θ
+ rm2 sin2 θ + mκ cos θ.

(4.3)

The shape of the effective potential Veff determines the dynamics of the system. Writing
c = cos θ, s = sin θ , we find

V ′
eff(θ) = 2rm2s−3

(
c2 − κ

2mr
c +

J

2mr
− 1

) (
c3 − c

(
J

2mr
+ 1

)
+

κ

2mr

)
. (4.4)

4.1. The shape of Veff when κ = 0 and m �= 0

When J = 0, Veff has a maximum at θ = π/2 and two minima at θ = 0, π . When
|J | > 0, Veff → ∞ as θ → 0 or π . For 0 < |J | < 2mr, Veff has a maximum at θ = π/2
and two minima at the values of θ given by sin θ = √|J |/(2mr), as shown in figure 1. For
|J | � 2mr, Veff has a single minimum at θ = π/2.

The energy of a solution sitting at a minimum of Veff is given by

H1d =
{

2rm2 |J/(2mr)| for |J | � 2mr

rm2 [(J/(2mr))2 + 1] for |J | > 2mr.
(4.5)

To understand this, we turn to the Bogomolnyi equations that arise from (3.14). These are
satisfied by setting θ̇ = 0 along with either θ = 0, θ = π or φ̇ = 2msign(mJ ). For |J | � 2mr ,
solutions to the Bogomolnyi equations are precisely the configurations that sit at minima of
Veff ; these saturate the Bogomolnyi bound H1d �

∣∣∑
i Qimi

∣∣ = |mJ |. For |J | > 2mr , the
Bogomolnyi equations cannot be solved, and the energy exceeds the Bogomolnyi bound even
at the minimum of Veff .

9
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0
4 2

3
4

Veff

Figure 1. A sketch of the effective potential when κ = 0 and 0 < |J | < 2mr .

4.2. The shape of Veff when κ > 0

For nonzero κ , Veff can take on a rich variety of different shapes. We find different patterns of
behaviour in the cases 0 < κ < mr/2,mr/2 < κ < 4mr and 4mr < κ , and in this section we
will consider each of these cases in turn.

In every case, we have Veff → ∞ as θ → 0 or π , except where stated otherwise. The
Bogomolnyi equations arising from (3.12) are solved by setting θ̇ = 0 and either θ = 0, θ = π

or φ̇ = 2m; note that by (4.2), φ̇ is a function of θ . To satisfy θ̇ = 0, a configuration must sit
at an extremum of Veff . We will refer to a minimum of Veff as ‘BPS’ if it is located at a value
of θ such that θ = 0, θ = π or φ̇ = 2m. Otherwise, we will say the minimum is ‘non-BPS’.
At BPS minima, the Bogomolnyi bound is saturated, so Veff = mJ . At non-BPS minima,
Veff > mJ . We will see that minima of Veff often occur at θ = f±, where we define

f±(κ, J ) = cos−1

⎛
⎝1

2

⎛
⎝ κ

2mr
±

√(
κ

2mr

)2

− 4

(
J

2mr
− 1

)⎞
⎠

⎞
⎠ .

We first describe the shape of Veff in the case 0 < κ < mr/2 for different values of J .
When |J | < κ, Veff has a non-BPS minimum and a maximum at values of θ less than π/2, and a
BPS minimum at θ = f−. A sketch is given in figure 2. When κ � J < 2mr +κ2/(8mr), Veff

has two BPS minima at θ = f±, with a maximum in between. A sketch of Veff would then look
like figure 1, but with the positions of the extrema shifted sideways; an exception is the special
case J = κ , when one of the minima is actually at θ = 0. When J > 2mr + κ2/(8mr), Veff

has a single non-BPS minimum at a value of θ in (0, π/2).
Now suppose we decrease J until it is negative. When J = −κ, Veff has a BPS minimum

at θ = π , and a non-BPS minimum and a maximum at values of θ in (0, π/2). For
2mr(3[κ/(4mr)]2/3 −1) < J < −κ, Veff has a non-BPS minimum at a value of θ in (π/2, π),
and a non-BPS minimum and a maximum at values of θ in (0, π/2). A sketch of Veff would
look similar to figure 2. Finally, when J < 2mr(3[κ/(4mr)]2/3−1), Veff has a single non-BPS
minimum at a value of θ in (π/2, π). This concludes our description of possible shapes of
Veff when 0 < κ < mr/2.

The pattern of possible shapes is slightly different if we choose mr/2 < κ < 4mr

because now −κ < 2mr(3[κ/(4mr)]2/3 − 1). For −κ � J � 2mr(3[κ/(4mr)]2/3 − 1), Veff

has a single BPS minimum at θ = f−; note that f− = π for J = −κ . For J < −κ or
J > 2mr(3[κ/(4mr)]2/3 − 1), the behaviour matches what we had in the case 0 < κ < mr/2

10
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0
4 2

3
4

Veff

Figure 2. A sketch of the effective potential when 0 < κ < mr/2 and |J | < κ .

Figure 3. Possible moduli space paths with nonzero κ and m.

for J < 2mr(3[κ/(4mr)]2/3 − 1) or J > −κ, respectively. In the case κ > 4mr, Veff always
has a single minimum. For |J | � κ , the minimum is BPS and is located at θ = f−. In
particular, the minimum is at θ = 0 when J = κ and at θ = π when J = −κ . For J < −κ ,
the minimum is non-BPS and is at a value of θ in (0, π/2); for J > κ , the minimum is
non-BPS and is at a value of θ in (π/2, π). Note that the results of this paragraph still apply
in the special case m = 0 if we redefine f− = cos−1(J/κ).

4.3. Possible types of motion

Each minimum of Veff gives a stable solution of the equations of motion of the system. Usually,
such a solution is a circular orbit around S2 with fixed nonzero φ̇ at a fixed value of θ . However,
if the minimum occurs at θ = 0 or π , then it gives a static solution sitting at a pole of S2. Also,
for m = 0 and |J | < κ , the BPS minimum of Veff corresponds to a static solution with φ̇ = 0
sitting at a value of θ in (0, π); at this value of θ , the effects of J and κ effectively cancel one
another out.

11
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If we give the system an energy greater than that required to sit at a given minimum of Veff ,
then θ oscillates around that minimum and the motion on S2 can take two distinct forms, as
shown in figure 3. For |J | > κ , the sign of φ̇ always matches that of J . We then have motion
similar to the lower, wave-like path in figure 3. Things are more interesting for |J | < κ . Then

sign(φ̇) = sign

(
θ − cos−1

(
J

κ

))
.

If the minimum of Veff that we are oscillating around is at the critical value θ = cos−1(J/κ)

then we always have motion similar to the upper, looping path in figure 3. If the minimum of
Veff that we are oscillating around is not at the critical value of θ , then we can have a wave-like
path or a looping path depending on whether there is enough energy for θ to cross the critical
value as it oscillates.
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